Goaltide Daily Current Affairs 2021

Sep 28, 2021

Current Affair 1:
UNDP launches new Insurance and Risk Finance Facility

Source Link

The United Nations Development Programme (UNDP) today announced a new flagship initiative — the Insurance and Risk Finance Facility (IRFF), within its Finance Sector Hub.

The Facility will strengthen the protection of vulnerable communities from socio-economic, climate and health-related disasters, by  significantly increasing the role of insurance and risk-financing in development.

In a world of growing and converging risks, developing countries and their communities are often the worst affected and the least able to rebuild and recover.

Insurance and risk financing provide a critical safety net, protecting assets, lives and livelihoods from the impact of crises. The IRFF will be present across five regions globally, working with the insurance industry and government to transform markets.

Current Affair 2:
Ox-eye daisy, an invasive species in Kashmir Himalayas

Source Link


Ox-eye daisy is one among the at least 100 alien invasive plant species in Kashmir Himalayas. Invasive alien species are known to cause environmental harm to the native ecosystem.


Indian botanist Anzar Khuroo who has tracked the spread of ox-eye daisies (Leucanthemum vulgare) in the Kashmir Himalayas for over a decade, describes the species as an incredible survivor. “Its seeds and seedlings survive under very dense native vegetation, without any access to light. In a few years, it spreads from small patches to full booms covering tens of hectares of land and turning the entire landscape into a beautiful area with white blooms.”

The species grows much faster than the native vegetation, outcompeting it, leaving virtually no space for other native plants to grow around its vicinity.

The daisy’s impacts on the region’s local flora also concern the pastoral communities dependent on livestock grazing. It completely invades the mountain meadows leaving little room for grasses preferred by the animals.

Manually removing ox-eye daisies by plucking them is not enough to restore the invaded ecosystems. Their growth causes persistent changes in soil nutrients, which hinder the successful restoration of invaded landscapes. Removal of invaded landscapes must be taken up long-term with regular scientific monitoring and evaluation of target landscapes.

Current Affair 3:
Quantum Technology


This is bit technical topic, but we have tried to explain you best.

While a standard computer handles digital bits of 0s and 1s, quantum computers use quantum bits or qubits, which can take any value between 0 and 1. And if you entangle the qubits, you can solve problems that classical computers cannot. A future quantum computer could, for example, crack any of today’s common security systems – such as 128-bit AES encryption – in seconds. Even the best supercomputer today would take millions of years to do the same job.

Quantum technology is a class of technology that works by using the principles of quantum mechanics (the physics of sub-atomic particles), including quantum entanglement and quantum superposition.

What is quantum entanglement?

Quantum entanglement is when two atoms are connected, or entangled, despite being separated. If you change the properties of one of them, the other changes instantly.

One possibility this creates is in enhancing the security of communication through quantum protected cipher keys. You can use entangled atoms to detect whether someone has interfered with the transmission of data

For example, you can have two entangled atoms with clockwise and anticlockwise ‘spins’. One atom is sent with the encryption key and if an eavesdropper intercepts the transmission, this causes a change in the ‘spin’ of the atom, affecting the overall quantum state of the system and resulting in the detection of the eavesdropping attempt.

What is quantum superposition?

Quantum superposition is the theory that sub-atomic particles exist in multiple states simultaneously. It’s the crux of the Schrodinger’s Cat thought experiment - a cat, a flask of poison and a radioactive source are in a sealed box. If a Geiger counter detects radioactivity, it shatters the flask, releasing the poison and killing the cat. Since the radioactivity detection is a statistical process, the cat can be both alive and dead while the box is sealed, with the outcome only confirmed when you open the box and observe the cat to be in one state or the other.

The practical application of this mind-bending version of reality is most obvious in quantum computers. While digital computers store data as bits (the ones and zeros of binary), quantum computers use qubits that exist as a one, zero or both at the same time. This superposition state creates a practically infinite range of possibilities, allowing for incredibly fast simultaneous and parallel calculations.

Four domains of quantum technologies:

  1. Quantum communication
  2. Quantum simulation
  3. Quantum computation
  4. Quantum sensing and metrology

Here’s a quick definition of the four main types of quantum technology.

Quantum communication: ostensibly hack-proof

An easy way to think about quantum communication is that it’s about data transmission. Quantum-based channels could help companies share more information with greater security. It’s also the foundation of what’s called the quantum internet.

Quantum communication promises to deliver an additional layer of security. Even if information is intercepted, it would be difficult to impossible to decipher.

Quantum computing: better, faster business applications

While both classical and quantum computing are focused on data processing, the latter represents information as elements called qubits. Among quantum computing’s potential benefits is the ability to help business solve certain problems exponentially faster.

Quantum computing is well-suited for processes that can tax the limits of classical computing, like warehouse management and transportation logistics. Major automotive companies are already testing how quantum can streamline the delivery of multiple products to multiple locations. This is totally different from current navigation systems. With quantum, logistics providers hope to map optimal routes based on current traffic and shipments for every vehicle in real-time ‒ all at once.”

Quantum sensing: more data powers better outcomes

Medical diagnostics is another area where quantum’s promise shines. Magnetic Resonance Imaging (MRI) has always been based on quantum technology. The newest advancements in quantum sensing improve accuracy, giving physicians a clearer picture of the patient’s body. The technology extracts information from individual atoms, which is much more precise than just measuring a group of atoms.

Quantum simulation:  boon to R&D

Scientists and researchers in industries like pharmaceuticals and chemistry are looking at quantum simulation to develop better products and save money.

If you want to create a drug with special properties or predict how different components will interact and behave with specific results, quantum simulation could be less expensive and faster. Instead of experimental trial, error and often happenstance discoveries, industries could predict results faster and with greater accuracy. Quantum simulation can model larger quantum systems compared to classical or even supercomputers


Quantum technology is manifested through applications in secure communication, disaster management through better prediction, computing, simulation, chemistry, healthcare, cryptography, imaging among others. Scientists have expanded quantum theory to understand biological phenomena such as smell, consciousness, enzyme catalysis, photosynthesis, avian navigation like that of the Robin, origin of life and effects on coronavirus.

In context of India:

India is currently at the forefront of tapping the second quantum revolution through massive investments in the field. Union Budget 2020-21 proposed to spend ₹8,000 crore ($ 1.2 billion) on the newly launched National Mission on Quantum Technologies and Applications (NMQTA) and ₹ 3660 Crore for National Mission on Interdisciplinary Cyber Physical Systems (NM-ICPS).

See both missions in brief:

National Mission on Interdisciplinary Cyber-Physical Systems (NM-ICPS)


Cyber Physical Systems (CPS) are new class of engineered systems that integrate computation and physical processes in a dynamic environment. CPS encompasses technology areas of Cybernetics, Mechatronics, Design and Embedded systems, Internet of Things (IoT), Big Data, Artificial Intelligence (AI) and many more.  The CPS systems are intelligent, autonomous and efficient and are expected to drive innovation in sectors as diverse as agriculture, water, energy, transportation, infrastructure, security, health and manufacturing. Thus, it is heralded as the next paradigm shift in technology that can exponentially spur growth and development.


To harness the potential of this new wave of technology and make India a leading player in CPS, the Union Cabinet approved the launch of National Mission on Interdisciplinary Cyber-Physical Systems (NM-ICPS) to be implemented by the Department of Science & Technology (DST) with a total outlay of Rs. 3660 Crore for a period of five years.

Current Affair 4:
World Contraception Day: India’s Family-Planning Programme


Family planning is recognised as the second-best return on investment, after education, among all targets set under the Sustainable Development Goals (SDGs). The goal of “every pregnancy a planned pregnancy” and accomplishment of “gender” and “reproductive” rights are fundamental to improve women’s empowerment, gender equality and progress in health and economic development.

To mark its importance, the world celebrates September 26 as World Contraceptive Day.

Of the four key goals of family planning – timing of births, spacing of birth, limiting of births and protection from sexual and reproductive-tract infections – India is progressing well only on the third.

A “great demographic enigma”, which experts still haven’t been able to explain, is how the average number of births per woman in a country can decline when overall contraceptive use is either stagnant or declining as well.

There are three major reasons for the poor performance of the family-planning programme in India.

Failing to implement a gender-equal, reproductive rights-based approach

From the start, female sterilisation has been the dominant method of fertility control. Except during the emergency (1975-1977), male sterilisation hasn’t contributed significantly to family-planning programmes.

Poor quality of care and overburdened health workers

Currently, incentive-based frontline health workers, like the Accredited Social Health Activist (ASHA) workers, are overburdened with multiple assignments, and are poorly trained and paid.

Dropping expenditure on core family planning programmes

The state is the major source of contraceptive supply in India, so public spending on family-planning is key to ensure universal access. But with only 1.2% of GDP, India’s public-health spending ranks among the lowest in the world.


<< Previous Next >>

Send To My Bookmarks